Skip to main content
Logo image

Section 20.1 Linear Transformations (AT1)

Subsection 20.1.1 Warm Up

Activity 20.1.

(a)
What is our definition for a set \(S\) of vectors to be linearly independent?
(b)
What specific calculation would you perform to test is a set \(S\) of Euclidean vectors is linearly independent?

Activity 20.2.

(a)
What is our definition for a set \(S\) of vectors in \(\IR^n\) to span \(\IR^n\) ?
(b)
What specific calculation would you perform to test is a set \(S\) of Euclidean vectors spans all of \(\IR^n\) ?

Subsection 20.1.2 Class Activities

Definition 20.3.

A linear transformation (also called a linear map) is a map between vector spaces that preserves the vector space operations. More precisely, if \(V\) and \(W\) are vector spaces, a map \(T:V\rightarrow W\) is called a linear transformation if
  1. \(T(\vec{v}+\vec{w}) = T(\vec{v})+T(\vec{w})\) for any \(\vec{v},\vec{w} \in V\text{,}\) and
  2. \(T(c\vec{v}) = cT(\vec{v})\) for any \(c \in \IR,\) and \(\vec{v} \in V\text{.}\)
In other words, a map is linear when vector space operations can be applied before or after the transformation without affecting the result.

Definition 20.4.

Given a linear transformation \(T:V\to W\text{,}\) \(V\) is called the domain of \(T\) and \(W\) is called the co-domain of \(T\text{.}\)
Figure 264. A linear transformation with a domain of \(\IR^3\) and a co-domain of \(\IR^2\)

Observation 20.5.

One example of a linear transformation \(\IR^3\to\IR^2\) is the projection of three-dimensional data onto a two-dimensional screen, as is necessary for computer animation in film or video games.
Figure 265. A projection of a \(3D\) teapot onto a \(2D\) screen

Activity 20.6.

Let \(T : \IR^3 \rightarrow \IR^2\) be given by
\begin{equation*} T\left(\left[\begin{array}{c} x \\ y \\ z \end{array}\right] \right) = \left[\begin{array}{c} x-z \\ 3y \end{array}\right]. \end{equation*}
(a)
Compute the result of adding vectors before a \(T\) transformation:
\begin{equation*} T\left( \left[\begin{array}{c} x \\ y \\ z \end{array}\right] + \left[\begin{array}{c} u \\ v \\ w \end{array}\right] \right) = T\left( \left[\begin{array}{c} x+u \\ y+v \\ z+w \end{array}\right] \right) \end{equation*}
  1. \(\displaystyle \left[\begin{array}{c} x-u+z-w \\ 3y-3v \end{array}\right]\)
  2. \(\displaystyle \left[\begin{array}{c} x+u-z-w \\ 3y+3v \end{array}\right]\)
  3. \(\displaystyle \left[\begin{array}{c} x+u \\ 3y+3v \\ z+w \end{array}\right]\)
  4. \(\displaystyle \left[\begin{array}{c} x-u \\ 3y-3v \\ z-w \end{array}\right]\)
(b)
Compute the result of adding vectors after a \(T\) transformation:
\begin{equation*} T\left( \left[\begin{array}{c} x \\ y \\ z \end{array}\right] \right) + T\left( \left[\begin{array}{c} u \\ v \\ w \end{array}\right] \right) = \left[\begin{array}{c} x-z \\ 3y \end{array}\right] + \left[\begin{array}{c} u-w \\ 3v \end{array}\right] \end{equation*}
  1. \(\displaystyle \left[\begin{array}{c} x-u+z-w \\ 3y-3v \end{array}\right]\)
  2. \(\displaystyle \left[\begin{array}{c} x+u-z-w \\ 3y+3v \end{array}\right]\)
  3. \(\displaystyle \left[\begin{array}{c} x+u \\ 3y+3v \\ z+w \end{array}\right]\)
  4. \(\displaystyle \left[\begin{array}{c} x-u \\ 3y-3v \\ z-w \end{array}\right]\)
(c)
Is \(T\) a linear transformation?
  1. Yes.
  2. No.
  3. More work is necessary to know.
(d)
Compute the result of scalar multiplication before a \(T\) transformation:
\begin{equation*} T\left(c\left[\begin{array}{c} x \\ y \\ z \end{array}\right] \right) = T\left(\left[\begin{array}{c} cx \\ cy \\ cz \end{array}\right] \right) \end{equation*}
  1. \(\displaystyle \left[\begin{array}{c} cx-cz\\ 3cy \end{array}\right]\)
  2. \(\displaystyle \left[\begin{array}{c} cx+cz \\ -3cy \end{array}\right]\)
  3. \(\displaystyle \left[\begin{array}{c} x+c \\ 3y+c \\ z+c \end{array}\right]\)
  4. \(\displaystyle \left[\begin{array}{c} x-c \\ 3y-c \\ z-c \end{array}\right]\)
(e)
Compute the result of scalar multiplication after a \(T\) transformation:
\begin{equation*} cT\left(\left[\begin{array}{c} x \\ y \\ z \end{array}\right] \right) = c\left[\begin{array}{c} x-z \\ 3y \end{array}\right] \end{equation*}
  1. \(\displaystyle \left[\begin{array}{c} cx-cz\\ 3cy \end{array}\right]\)
  2. \(\displaystyle \left[\begin{array}{c} cx+cz \\ -3cy \end{array}\right]\)
  3. \(\displaystyle \left[\begin{array}{c} x+c \\ 3y+c \\ z+c \end{array}\right]\)
  4. \(\displaystyle \left[\begin{array}{c} x-c \\ 3y-c \\ z-c \end{array}\right]\)
(f)
Is \(T\) a linear transformation?
  1. Yes.
  2. No.
  3. More work is necessary to know.

Activity 20.7.

Let \(S : \IR^2 \rightarrow \IR^4\) be given by
\begin{equation*} S\left(\left[\begin{array}{c} x \\ y \end{array}\right] \right) = \left[\begin{array}{c} x+y \\ x^2 \\ y+3 \\ y-2^x \end{array}\right] \end{equation*}
(a)
Compute
\begin{equation*} S\left( \left[\begin{array}{c} 0 \\ 1 \end{array}\right] + \left[\begin{array}{c} 2 \\ 3 \end{array}\right] \right) = S\left( \left[\begin{array}{c} 2 \\ 4 \end{array}\right] \right) \end{equation*}
  1. \(\displaystyle \left[\begin{array}{c} 6 \\ 4 \\ 7 \\ 0 \end{array}\right]\)
  2. \(\displaystyle \left[\begin{array}{c} -3 \\ 0 \\ 1 \\ 5 \end{array}\right]\)
  3. \(\displaystyle \left[\begin{array}{c} -3 \\ -1 \\ 7 \\ 5 \end{array}\right]\)
  4. \(\displaystyle \left[\begin{array}{c} 6 \\ 4 \\ 10 \\ -1 \end{array}\right]\)
(b)
Compute
\begin{equation*} S\left( \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \right) + S\left( \left[\begin{array}{c} 2 \\ 3 \end{array}\right] \right) = \left[\begin{array}{c} 0+1 \\ 0^2 \\ 1+3 \\ 1-2^0 \end{array}\right] + \left[\begin{array}{c} 2+3 \\ 2^2 \\ 3+3 \\ 3-2^2 \end{array}\right] \end{equation*}
  1. \(\displaystyle \left[\begin{array}{c} 6 \\ 4 \\ 7 \\ 0 \end{array}\right]\)
  2. \(\displaystyle \left[\begin{array}{c} -3 \\ 0 \\ 1 \\ 5 \end{array}\right]\)
  3. \(\displaystyle \left[\begin{array}{c} -3 \\ -1 \\ 7 \\ 5 \end{array}\right]\)
  4. \(\displaystyle \left[\begin{array}{c} 6 \\ 4 \\ 10 \\ -1 \end{array}\right]\)
(c)
Is \(S\) a linear transformation?
  1. Yes.
  2. No.
  3. More work is necessary to know.

Activity 20.8.

Fill in the \(\unknown\)s, assuming \(T:\mathbb R^3\to\mathbb R^3\) is linear:
\begin{equation*} T\left(\left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]\right) = T\left(\unknown \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right]\right) = \unknown T\left(\left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right]\right) = \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \end{array}\right] \end{equation*}

Remark 20.9.

In summary, any one of the following is enough to prove that \(T:V\to W\) is not a linear transformation:
  • Find specific values for \(\vec v,\vec w\in V\) such that \(T(\vec v+\vec w)\not=T(\vec v)+T(\vec w)\text{.}\)
  • Find specific values for \(\vec v\in V\) and \(c\in \IR\) such that \(T(c\vec v)\not=cT(\vec v)\text{.}\)
  • Show \(T(\vec 0)\not=\vec 0\text{.}\)
If you cannot do any of these, then \(T\) can be proven to be a linear transformation by doing both of the following:
  1. For all \(\vec v,\vec w\in V\) (not just specific values), \(T(\vec v+\vec w)=T(\vec v)+T(\vec w)\text{.}\)
  2. For all \(\vec v\in V\) and \(c\in \IR\) (not just specific values), \(T(c\vec v)=cT(\vec v)\text{.}\)
(Note the similarities between this process and showing that a subset of a vector space is or is not a subspace: Remark 19.42.)

Activity 20.10.

(a)
Consider the following maps of Euclidean vectors \(P:\mathbb R^3\rightarrow\mathbb R^3\) and \(Q:\mathbb R^3\rightarrow\mathbb R^3\) defined by
\begin{equation*} P\left( \left[\begin{array}{c} x \\ y \\ z \end{array}\right] \right)= \left[\begin{array}{c} -2 \, x - 3 \, y - 3 \, z \\ 3 \, x + 4 \, y + 4 \, z \\ 3 \, x + 4 \, y + 5 \, z \end{array}\right] \hspace{1em} \text{and} \hspace{1em} Q\left( \left[\begin{array}{c} x \\ y \\ z \end{array}\right] \right)= \left[\begin{array}{c} x - 4 \, y + 9 \, z \\ y - 2 \, z \\ 8 \, y^{2} - 3 \, x z \end{array}\right]. \end{equation*}
Which do you suspect?
  1. \(P\) is linear, but \(Q\) is not.
  2. \(Q\) is linear, but \(P\) is not.
  3. Both maps are linear.
  4. Neither map is linear.
(b)
Consider the following map of Euclidean vectors \(S:\mathbb R^2\rightarrow\mathbb R^2\)
\begin{equation*} S\left( \left[\begin{array}{c} x \\ y \end{array}\right]\right)= \left[\begin{array}{c} x + 2 \, y \\ 9 \, x y \end{array}\right]. \end{equation*}
Prove that \(S\) is not a linear transformation.
(c)
Consider the following map of Euclidean vectors \(T:\mathbb R^2\rightarrow\mathbb R^2\)
\begin{equation*} T\left( \left[\begin{array}{c} x \\ y \end{array}\right] \right)= \left[\begin{array}{c} 8 \, x - 6 \, y \\ 6 \, x - 4 \, y \end{array}\right]. \end{equation*}
Prove that \(T\) is a linear transformation.

Subsection 20.1.3 Individual Practice

Activity 20.11.

Let \(f(x)=x^3-1\text{.}\) Then, \(f\colon\IR\to\IR\) is a function with domain and codomain equal to \(\IR\text{.}\) Is \(f(x)\) is a linear transformation?

Activity 20.12.

Consider two vectors \(\vec{u},\vec{v}\) and their sum \(\vec{u}+\vec{v}\text{.}\)
(a)
Is it the case that rotating \(\vec{u}+\vec{v}\) about the origin by \(\frac{\pi}{2}=90^\circ\) is the same as first rotating each of \(\vec{u},\vec{v}\) and then adding them together?
(b)
Is it the case that rotating \(5\vec{u}\) about the origin by \(\frac{\pi}{2}=90^\circ\) is the same as first rotating \(\vec{u}\) by \(\frac{\pi}{2}=90^\circ\) and then scaling by \(5\text{?}\)
(c)
Based on this, do you suspect that the transformation \(R\colon\IR^2\to\IR^2\) given by rotating vectors about the origin through an angle of \(\frac{\pi}{2}=90^\circ\) is linear? Do you think there is anything special about the angle \(\frac{\pi}{2}=90^\circ\text{?}\)

Activity 20.13.

In Activity 19.16, we made an analogy between vectors and linear combinations with ingredients and recipes. Let us think of cooking as a transformation of ingredients. In this analogy, would it be appropriate for us to consider "cooking" to be a linear transformation or not? Describe your reasoning.

Subsection 20.1.4 Videos

Figure 266. Video: Showing a transformation is linear
Figure 267. Video: Showing a transformation is not linear

Subsection 20.1.5 Exercises

Subsection 20.1.6 Mathematical Writing Explorations

Exploration 20.14.

If \(V,W\) are vectors spaces, with associated zero vectors \(\vec{0}_V\) and \(\vec{0}_W\text{,}\) and \(T:V \rightarrow W\) is a linear transformation, does \(T(\vec{0}_V) = \vec{0}_W\text{?}\) Prove this is true, or find a counterexample.

Exploration 20.15.

Assume \(f: V \rightarrow W\) is a linear transformation between vector spaces. Let \(\vec{v} \in V\) with additive inverse \(\vec{v}^{-1}\text{.}\) Prove that \(f(\vec{v}^{-1}) = [f(\vec{v})]^{-1}\text{.}\)

Subsection 20.1.7 Sample Problem and Solution

Sample problem Example C.12.