Skip to main content
Logo image

Section 17.2 Convergence of Power Series (PS2)

Subsection 17.2.1 Activities

Activity 17.7.

Consider the series \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n\) where \(x\) is a real number.
(a)
If \(x=2\text{,}\) then \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{2^n}{n!}\text{.}\) What can be said about this series?
  1. The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{2^n}{n!}\) converges.
  2. The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{2^n}{n!}\) diverges.
  3. None of the techniques we have learned so far allow us to conclude whether \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{2^n}{n!}\) converges or diverges.
(b)
If \(x=-100\text{,}\) then \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{(-100)^n}{n!}\text{.}\) What can be said about this series?
  1. The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{(-100)^n}{n!}\) converges.
  2. The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{(-100)^n}{n!}\) diverges.
  3. None of the techniques we have learned so far allow us to conclude whether \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{(-100)^n}{n!}\) converges or diverges.
(c)
Suppose that \(x\) were some arbitrary real number. What can be said about this series?
  1. The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n\) converges.
  2. The techniques we have learned so far allow us to conclude that \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n\) diverges.
  3. None of the techniques we have learned so far allow us to conclude whether \(\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n\) converges or diverges.

Remark 17.8.

Consider a power series \(\displaystyle\sum a_n(x-c)^n\text{.}\) Recall from Fact 16.105 that if
\begin{align*} \displaystyle \lim_{n\to \infty} \left|\frac{a_{n+1}(x-c)^{n+1}}{a_n(x-c)^n}\right| & < 1 \end{align*}
then \(\displaystyle\sum a_n(x-c)^n\) converges.
Then recall:
\begin{align*} \displaystyle \lim_{n\to \infty} \left|\frac{a_{n+1}(x-c)^{n+1}}{a_n(x-c)^n}\right| & = \displaystyle \lim_{n\to \infty} \left|\frac{a_{n+1}(x-c)}{a_n}\right|\\ &=\displaystyle \lim_{n\to \infty} |x-c|\left|\frac{a_{n+1}}{a_n}\right| \\ &=\displaystyle |x-a|\lim_{n\to \infty} \left|\frac{a_{n+1}}{a_n}\right|. \end{align*}

Activity 17.9.

Consider \(\displaystyle\sum_{n=0}^\infty \frac{1}{n^2+1}x^n.\)
(a)
Letting \(a_n=\frac{1}{n^2+1}\text{,}\) find \(\displaystyle \lim_{n\to \infty} \left|\frac{a_{n+1}}{a_n}\right|\text{.}\)
(b)
For what values of \(x\) is \(\displaystyle |x|\lim_{n\to \infty} \left|\frac{a_{n+1}}{a_n}\right| < 1\text{?}\)
  1. \(x < 1\text{.}\)
  2. \(0\leq x < 1\text{.}\)
  3. \(-1 < x < 1\text{.}\)
(c)
If \(x=1\text{,}\) does \(\displaystyle\sum_{n=0}^\infty \frac{1}{n^2+1}x^n\) converge?
(d)
If \(x=-1\text{,}\) does \(\displaystyle\sum_{n=0}^\infty \frac{1}{n^2+1}x^n\) converge?
(e)
Which of the following describe the values of \(x\) for which \(\displaystyle\sum_{n=0}^\infty \frac{1}{n^2+1}x^n\) converges?
  1. \((-1,1)\text{.}\)
  2. \([-1,1)\text{.}\)
  3. \((-1,1]\text{.}\)
  4. \([-1,1]\text{.}\)

Activity 17.10.

Consider \(\displaystyle\sum_{n=0}^\infty \frac{2^n}{5^n}(x-2)^n.\)
(a)
Letting \(a_n=\frac{2^n}{5^n}\text{,}\) find \(\displaystyle \lim_{n\to \infty} \left|\frac{a_{n+1}}{a_n}\right|\text{.}\)
(b)
For what values of \(x\) is \(\displaystyle |x-2|\lim_{n\to \infty} \left|\frac{a_{n+1}}{a_n}\right| < 1\text{?}\)
  1. \(-\frac{2}{5} < x < \frac{2}{5}\text{.}\)
  2. \(\frac{8}{5} < x < \frac{12}{5}\text{.}\)
  3. \(-\frac{5}{2} < x < \frac{5}{2}\text{.}\)
  4. \(-\frac{1}{2} < x < \frac{9}{2}\text{.}\)
(c)
If \(x=\frac{9}{2}\text{,}\) does \(\displaystyle\sum_{n=0}^\infty \frac{2^n}{5^n}(x-2)^n\) converge?
(d)
If \(x=-\frac{1}{2}\text{,}\) does \(\displaystyle\sum_{n=0}^\infty \frac{2^n}{5^n}(x-2)^n\) converge?
(e)
Which of the following describe the values of \(x\) for which \(\displaystyle\sum_{n=0}^\infty \frac{2^n}{5^n}(x-2)^n\) converges?
  1. \((-\frac{1}{2},\frac{9}{2})\text{.}\)
  2. \([-\frac{1}{2},\frac{9}{2})\text{.}\)
  3. \((-\frac{1}{2},\frac{9}{2}]\text{.}\)
  4. \([-\frac{1}{2},\frac{9}{2}]\text{.}\)

Activity 17.11.

Consider \(\displaystyle\sum_{n=0}^\infty \frac{n^2}{n!}\left(x+\frac{1}{2}\right)^n.\)
(a)
Letting \(c_n=\frac{n^2}{n!}\text{,}\) find \(\displaystyle \lim_{n\to \infty} \left|\frac{a_{n+1}}{a_n}\right|\text{.}\)
(b)
For what values of \(x\) is \(\displaystyle \left|x+\frac{1}{2}\right|\lim_{n\to \infty} \left|\frac{a_{n+1}}{a_n}\right| < 1\text{?}\)
  1. \(0\leq x < \infty\text{.}\)
  2. All real numbers.
(c)
What describes the values of \(x\) for which \(\displaystyle\sum_{n=0}^\infty \frac{n^2}{n!}\left(x+\frac{1}{2}\right)^n\) converges?

Activity 17.13.

Find the center of convergence, radius of convergence, and interval of convergence for the series:
\begin{equation*} \sum_{n=0}^\infty \frac{3^{n} \left(-1\right)^{n} {\left(x - 1\right)}^{n}}{n!}. \end{equation*}

Activity 17.14.

Find the center of convergence, radius of convergence, and interval of convergence for the series:
\begin{equation*} \sum_{n=0}^\infty \frac{3^{n} {\left(x + 2\right)}^{n}}{n}. \end{equation*}

Activity 17.15.

Consider the power series \(\displaystyle \sum_{n=0}^\infty \frac{2^n+1}{n3^n}\left(x+1\right)^n\text{.}\)
(a)
What is the center of convergence for this power series?
(b)
What is the radius of convergence for this power series?
(c)
What is the interval of convergence for this power series?
(d)
If \(x=-0.5\text{,}\) does this series converge? (Use the interval of convergence.)
(e)
If \(x=1\text{,}\) does this series converge? (Use the interval of convergence.)

Subsection 17.2.2 Videos

Figure 243. Video: Determine the interval of convergence for a given power series

Subsection 17.2.3 Exercises