Skip to main content\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section C.2 Definitions
1.1 Linear Equations and Inequalities (EQ1)
1.3 Distance and Midpoint (EQ3)
1.4 Absolute Value Equations and Inequalities (EQ4)
1.5 Quadratic Equations (EQ5)
2.1 Introduction to Functions (FN1)
2.3 Characteristics of a Function’s Graph (FN3)
2.4 Transformation of Functions (FN4)
2.5 Combining and Composing Functions (FN5)
2.6 Finding the Inverse Function (FN6)
3.1 Slope and Average Rate of Change (LF1)
3.2 Equations of Lines (LF2)
3.4 Parallel and Perpendicular Lines (LF4)
3.6 Systems of Linear Equations (LF6)
4.1 Graphing Quadratic Functions (PR1)
4.3 Graphs of Polynomial Functions (PR3)
4.4 Polynomial Long Division (PR4)
4.6 Rational Equations (PR6)
4.7 Properties and Graphs of Rational Functions (PR7)
4.8 Quadratic Inequalities (PR8)
4.9 Rational Inequalities (PR9)
5.1 Introduction to Exponentials (EL1)
5.3 Introduction to Logarithms (EL3)
5.5 Properties of Logarithms (EL5)
5.6 Solving Exponential and Logarithmic Equations (EL6)
6.1 Degree and Radian Measure (TR1)
6.2 Angle Position and Arc Length (TR2)
6.3 Trigonometric Ratios (TR3)
6.4 Special Right Triangles (TR4)
7.1 Properties of Sine and Cosine Graphs (PF1)
7.3 Inverse Trig Functions (PF3)
8.3 Trigonometric Equations (TE3)
8.6 Applications of Trigonometry (TE6)
9.1 Limits Graphically (LT1)
9.3 Limits Analytically (LT3)
9.4 Continuity (LT4)
9.5 Limits with Infinite Inputs (LT5)
9.6 Limits with Infinite Outputs (LT6)
10.1 Derivatives Graphically and Numerically (DF1)
10.2 Derivatives Analytically (DF2)
10.8 Differentiating Inverse Functions (DF8)
11.1 Tangents, Motion, and Marginals (AD1)
11.2 Linear Approximation (AD2)
11.4 Extreme Values (AD4)
11.5 Derivative Tests (AD5)
11.6 Concavity and Inflection (AD6)
12.1 Geometry of Definite Integrals (IN1)
12.2 Approximating Definite Integrals (IN2)
12.3 Elementary Antiderivatives (IN3)
12.5 FTC for Definite Integrals (IN5)
13.8 Improper Integrals (TI8)
14.1 Average Value (AI1)
14.3 Volumes of Revolution (AI3)
15.1 Parametric/Vector Equations (CO1)
16.1 Sequence Formulas (SQ1)
16.2 Sequence Properties and Limits (SQ2)
16.3 Partial Sums and Series (SQ3)
16.8 Absolute Convergence (SQ8)
17.1 Power Series (PS1)
17.4 Taylor Series (PS4)
17.5 Taylor’s Theorem (PS5)
18.1 Linear Systems, Vector Equations, and Augmented Matrices (LE1)
18.2 Row Reduction of Matrices (LE2)
18.4 Linear Systems with Infinitely-Many Solutions (LE4)
19.1 Linear Combinations (EV1)
19.3 Subspaces (EV3)
19.4 Linear Independence (EV4)
19.5 Identifying a Basis (EV5)
19.6 Subspace Basis and Dimension (EV6)
20.1 Linear Transformations (AT1)
20.2 Standard Matrices (AT2)
20.3 Image and Kernel (AT3)
20.4 Injective and Surjective Linear Maps (AT4)
20.5 Vector Spaces (AT5)
21.1 Matrices and Multiplication (MX1)
21.2 The Inverse of a Matrix (MX2)
22.1 Row Operations and Determinants (GT1)
22.3 Eigenvalues and Characteristic Polynomials (GT3)
22.4 Eigenvectors and Eigenspaces (GT4)
22.5 Change of Basis (GT5)