Skip to main content
Logo image

Section 16.7 Ratio and Root Tests (SQ7)

Subsection 16.7.1 Activities

Activity 16.100.

Consider the series \(\displaystyle \sum_{n=0}^\infty \frac{2^n}{3^n-2}.\)
(a)
Which of these series most closely resembles \(\displaystyle \sum_{n=0}^\infty \frac{2^n}{3^n-2}\text{?}\)
  1. \(\displaystyle \sum_{n=0}^\infty \frac{2}{3}\text{.}\)
  2. \(\displaystyle \sum_{n=0}^\infty \frac{2}{3}n\text{.}\)
  3. \(\displaystyle \sum_{n=0}^\infty \left(\frac{2}{3}\right)^n\text{.}\)
(b)
Based on your previous choice, do we think this series is more likely to converge or diverge?
(c)
Find \(\displaystyle \lim_{n\to\infty} \frac{\frac{2^{n+1}}{3^{n+1}-2}}{\frac{2^n}{3^n-2}}=\lim_{n\to\infty}\frac{2^{n+1}(3^n-2)}{(3^{n+1}-2)2^n}=\lim_{n\to\infty}\frac{2\cdot 2^{n}(3^n-2)}{3(3^{n}-\frac{2}{3})2^n}.\)
  1. \(\displaystyle \lim_{n\to\infty} \frac{\frac{2^{n+1}}{3^{n+1}-2}}{\frac{2^n}{3^n-2}}=0\text{.}\)
  2. \(\displaystyle \lim_{n\to\infty} \frac{\frac{2^{n+1}}{3^{n+1}-2}}{\frac{2^n}{3^n-2}}=\frac{2}{3}\text{.}\)
  3. \(\displaystyle \lim_{n\to\infty} \frac{\frac{2^{n+1}}{3^{n+1}-2}}{\frac{2^n}{3^n-2}}=1\text{.}\)
  4. \(\displaystyle \lim_{n\to\infty} \frac{\frac{2^{n+1}}{3^{n+1}-2}}{\frac{2^n}{3^n-2}}=2\text{.}\)
  5. \(\displaystyle \lim_{n\to\infty} \frac{\frac{2^{n+1}}{3^{n+1}-2}}{\frac{2^n}{3^n-2}}=3\text{.}\)

Activity 16.101.

Consider the series \(\displaystyle \sum_{n=0}^\infty a_n=\sum_{n=0}^\infty \frac{3}{2^n}\text{.}\)
(a)
Does \(\displaystyle \sum_{n=0}^\infty a_n=\sum_{n=0}^\infty \frac{3}{2^n}\) converge?
(b)
Find \(\displaystyle\frac{a_{n+1}}{a_n}\text{.}\)
  1. \(2\text{.}\)
  2. \(\displaystyle \frac{1}{2}\text{.}\)
  3. \(\displaystyle \frac{2^n}{2^n+1}\text{.}\)
  4. \(\displaystyle \frac{9}{2^{2n+1}}\text{.}\)
  5. \(\displaystyle \frac{9}{2^{n+2}}\text{.}\)
(c)
Find \(\displaystyle \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|.\)
  1. \(-\infty\text{.}\)
  2. \(0\text{.}\)
  3. \(\displaystyle \frac{1}{2}\text{.}\)
  4. \(2\text{.}\)
  5. \(\infty\text{.}\)

Activity 16.102.

Consider the series \(\displaystyle \sum_{n=1}^\infty a_n=\sum_{n=1}^\infty \frac{n^2}{n+1}\text{.}\)
(a)
Does \(\displaystyle \sum_{n=1}^\infty a_n=\sum_{n=1}^\infty \frac{n^2}{n+1}\) converge?
Answer.
No.
(b)
Find \(\displaystyle\frac{a_{n+1}}{a_n}\text{.}\)
  1. \(\displaystyle 1+\frac{n+1}{n^2}\text{.}\)
  2. \(\displaystyle \frac{(n^2+1)(n+1)}{(n+2)n^2}\text{.}\)
  3. \(\displaystyle \frac{(n+1)}{(n+2)n^2}\text{.}\)
  4. \(\displaystyle \frac{(n+1)^3}{(n+2)n^2}\text{.}\)
  5. \(\displaystyle \frac{(n+1)n^2}{n+2}\text{.}\)
Answer.
D. \(\displaystyle \frac{(n+1)^3}{(n+2)n^2}\text{.}\)
  • A. results from bad subscript usage..
  • B. occurs from using the Freshman Dream Theorem: \((n+1)^2=n^2+1\text{..}\)
  • C. results from a bad cancellation..
  • E. is the reciprocal of C.
(c)
Find \(\displaystyle \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|.\)
  1. \(1\text{.}\)
  2. \(0\text{.}\)
  3. \(\displaystyle \frac{1}{2}\text{.}\)
  4. \(2\text{.}\)
  5. \(\infty\text{.}\)
Answer.
A. \(1\text{.}\)

Activity 16.103.

Consider the series \(\displaystyle \sum_{n=1}^\infty a_n=\sum_{n=1}^\infty \frac{1}{n}\text{.}\)
(a)
Does \(\displaystyle \sum_{n=1}^\infty a_n=\sum_{n=1}^\infty \frac{1}{n}\) converge?
(b)
Find \(\displaystyle\frac{a_{n+1}}{a_n}\text{.}\)
(c)
Find \(\displaystyle \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|.\)

Activity 16.104.

Consider the series \(\displaystyle \sum_{n=1}^\infty a_n=\sum_{n=1}^\infty \frac{(-1)^n}{n}\text{.}\)
(a)
Does \(\displaystyle \sum_{n=1}^\infty a_n=\sum_{n=1}^\infty \frac{(-1)^n}{n}\) converge?
(b)
Find \(\frac{a_{n+1}}{a_n}\text{.}\)
(c)
Find \(\displaystyle \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|.\)

Activity 16.107.

Consider the series \(\displaystyle\sum_{n=0}^\infty \frac{n^2}{n!}\text{.}\)
(a)
Which of the following is \(a_n\text{?}\)
  1. \(n^2\text{.}\)
  2. \(n!\text{.}\)
  3. \(\displaystyle\frac{n^2}{n!}\text{.}\)
(b)
Which of the following is \(a_{n+1}\text{?}\)
  1. \(\displaystyle\frac{n^2}{n!}\text{.}\)
  2. \(\displaystyle(n+1)^2\text{.}\)
  3. \(\displaystyle(n+1)!\text{.}\)
  4. \(\displaystyle\frac{(n+1)^2}{(n+1)!}\text{.}\)
  5. \(\displaystyle\frac{n^2+1}{n!+1}\text{.}\)
(c)
Which of the following is \(\displaystyle\left|\frac{a_{n+1}}{a_n}\right|\text{?}\)
  1. \(\displaystyle\frac{(n+1)^2n^2}{(n+1)!n!}\text{.}\)
  2. \(\displaystyle\frac{(n+1)^2n!}{(n+1)!n^2}\text{.}\)
  3. \(\displaystyle\frac{(n+1)!n!}{(n+1)^2n^2}\text{.}\)
  4. \(\displaystyle\frac{(n+1)!n^2}{(n+1)^2n!}\text{.}\)
(d)
Using the fact \((n+1)!=(n+1)\cdot n!\text{,}\) simplify \(\displaystyle\left|\frac{a_{n+1}}{a_n}\right|\) as much as possible.
(e)
Find \(\displaystyle\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|\text{.}\)
(f)
Does \(\displaystyle\sum_{n=0}^\infty \frac{n^2}{n!}\) converge?

Activity 16.108.

(a)
What is \(a_n\text{?}\)
(b)
Which of the following is \(\displaystyle\sqrt[n]{|a_n|}\text{?}\)
  1. \(\displaystyle \frac{n+1}{9}\text{.}\)
  2. \(\displaystyle \frac{n}{9}\text{.}\)
  3. \(n\text{.}\)
  4. \(9\text{.}\)
  5. \(\displaystyle \frac{1}{9}\text{.}\)
(c)
Find \(\displaystyle\lim_{n\rightarrow\infty}\sqrt[n]{|a_n|}\text{.}\)
(d)
Does \(\displaystyle \sum_{n=1}^\infty \frac{n^n}{9^n}\) converge?

Activity 16.109.

For each series, use the ratio or root test to determine if the series converges or diverges.
(a)
\(\displaystyle \sum_{n=1}^\infty \displaystyle\left(\frac{1}{1+n}\right)^n\)
(b)
\(\displaystyle \sum_{n=1}^\infty \displaystyle\frac{2^n}{n^n}\)
(c)
\(\displaystyle \sum_{n=1}^\infty \displaystyle\frac{(2n)!}{(n!)(n!)}\)
(d)
\(\displaystyle \sum_{n=1}^\infty \displaystyle\frac{4^n(n!)(n!)}{(2n)!}\)

Activity 16.110.

Consider the series \(\displaystyle \sum_{n=0}^\infty \displaystyle\frac{2^n+5}{3^n}\text{.}\)
(a)
Use the root test to check for convergence of this series.
(b)
Use the ratio test to check for convergence of this series.
(c)
Use the comparison (or limit comparison) test to check for convergence of this series.
(d)
Find the sum of this series.

Activity 16.111.

Consider \(\displaystyle\sum_{n=1}^\infty \frac{n}{3^n}\text{.}\) Recall that \(\displaystyle \sqrt[n]{\frac{n}{3^n}}=\left(\frac{n}{3^n}\right)^{1/n}=\frac{n^{1/n}}{(3^n)^{1/n}}.\)
(a)
Let \(\displaystyle \alpha=\lim_{n\to\infty}\ln(n^{1/n})=\lim_{n\to\infty}\frac{1}{n}\ln(n)\text{.}\) Find \(\alpha\text{.}\)
(b)
Recall that \(\displaystyle \lim_{n\to\infty}n^{1/n}=\lim_{n\to\infty} e^{\ln(n^{1/n})}=e^\alpha.\) Find \(\displaystyle \lim_{n\to\infty}n^{1/n}\text{.}\)
(c)
Find \(\displaystyle \lim_{n\to\infty} \sqrt[n]{\frac{n}{3^n}}=\lim_{n\to\infty}\left(\frac{n}{3^n}\right)^{1/n}=\lim_{n\to\infty}\frac{n^{1/n}}{(3^n)^{1/n}}\text{.}\)
(d)
Does \(\displaystyle\sum_{n=1}^\infty \frac{n}{3^n}\) converge?

Activity 16.112.

Consider the series \(\displaystyle \sum_{n=0}^\infty \displaystyle\frac{n^2}{2^n}\text{.}\)
(a)
Use the root test to check for convergence of this series.
(b)
Use the ratio test to check for convergence of this series.
(c)
Use the comparison (or limit comparison) test to check for convergence of this series.

Subsection 16.7.2 Videos

Figure 238. Video: Use the ratio and root tests to determine if a series converges or diverges

Subsection 16.7.3 Exercises