Skip to main content
Logo image

Section 22.4 Eigenvectors and Eigenspaces (GT4)

Subsection 22.4.1 Warm Up

Activity 22.67.

Which of the following vectors is an eigenvector for \(A=\left[\begin{array}{cccc} 2 & 4 & -1 & -5 \\ 0 & 0 & -3 & -9 \\ 1 & 1 & 0 & 2 \\ -2 & -2 & 3 & 5 \end{array}\right]\text{?}\)
  1. \(\displaystyle \left[\begin{matrix}-2\\1\\0\\1\end{matrix}\right]\)
  2. \(\displaystyle \left[\begin{matrix}-3\\3\\-2\\1\end{matrix}\right]\)

Subsection 22.4.2 Class Activities

Activity 22.68.

It’s possible to show that \(-2\) is an eigenvalue for \(A=\left[\begin{array}{ccc}-1&4&-2\\2&-7&9\\3&0&4\end{array}\right]\text{.}\)
Compute the kernel of the transformation with standard matrix
\begin{equation*} A-(-2)I = \left[\begin{array}{ccc} \unknown & 4&-2 \\ 2 & \unknown & 9\\3&0&\unknown \end{array}\right] \end{equation*}
to find all the eigenvectors \(\vec x\) such that \(A\vec x=-2\vec x\text{.}\)

Definition 22.69.

Since the kernel of a linear map is a subspace of \(\IR^n\text{,}\) and the kernel obtained from \(A-\lambda I\) contains all the eigenvectors associated with \(\lambda\text{,}\) we call this kernel the eigenspace of \(A\) associated with \(\lambda\text{.}\)

Activity 22.70.

Find a basis for the eigenspace for the matrix \(\left[\begin{array}{ccc} 0 & 0 & 3 \\ 1 & 0 & -1 \\ 0 & 1 & 3 \end{array}\right]\) associated with the eigenvalue \(3\text{.}\)

Activity 22.71.

Find a basis for the eigenspace for the matrix \(\left[\begin{array}{cccc} 5 & -2 & 0 & 4 \\ 6 & -2 & 1 & 5 \\ -2 & 1 & 2 & -3 \\ 4 & 5 & -3 & 6 \end{array}\right]\) associated with the eigenvalue \(1\text{.}\)

Activity 22.72.

Find a basis for the eigenspace for the matrix \(\left[\begin{array}{cccc} 4 & 3 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 2 \end{array}\right]\) associated with the eigenvalue \(2\text{.}\)

Subsection 22.4.3 Individual Practice

Activity 22.73.

Suppose that \(T\colon\IR^2\to\IR^2\) is a linear transformation with standard matrix \(A\text{.}\) Further, suppose that we know that \(\vec{u}=\left[\begin{matrix}1\\-1\end{matrix}\right]\) and \(\vec{v}=\left[\begin{matrix}2\\-3\end{matrix}\right]\) are eigenvectors corresponding to eigenvalues \(2\) and \(-3\) respectively.
(a)
Express the vector \(\vec{w}=\left[\begin{matrix}2\\1\end{matrix}\right]\) as a linear combination of \(\vec{u},\vec{v}\text{.}\)
(b)
Determine \(T(\vec{w})\text{.}\)

Subsection 22.4.4 Videos

Figure 307. Video: Finding eigenvectors

Exercises 22.4.5 Exercises

Subsection 22.4.6 Mathematical Writing Explorations

Exploration 22.74.

Given a matrix \(A\text{,}\) let \(\{\vec{v_1},\vec{v_2},\ldots,\vec{v_n}\}\) be the eigenvectors with associated distinct eigenvalues \(\{\lambda_1,\lambda_2,\ldots, \lambda_n\}\text{.}\) Prove the set of eigenvectors is linearly independent.

Subsection 22.4.7 Sample Problem and Solution

Sample problem Example C.25.