Skip to main content
Logo image

Section 15.4 Polar Coordinates (CO4)

Subsection 15.4.1 Activities

A point in the polar coordinate system.
Figure 224. A point in the polar coordinate system.
The polar grid
Figure 225. The polar grid.

Activity 15.23.

(a)
Plot the Cartesian point \(P=(x,y)=(\sqrt{3},-1)\) and draw line segments connecting the origin to \(P\text{,}\) the origin to \((x,y)=(\sqrt{3},0)\text{,}\) and \(P\) to \((x,y)=(\sqrt{3},0)\text{.}\)
(b)
Solve the triangle formed by the line segments you just drew (i.e. find the lengths of all sides and the measures of each angle).
(c)
Find all polar coordinates for the Cartesian point \((x,y)=(\sqrt{3},-1)\text{.}\)
(d)
Find Cartesian coordinates for the polar point \((r,\theta)=\left(-\sqrt{2},\displaystyle\frac{3\pi}{4}\right)\text{.}\)

Activity 15.24.

Graph each of the following.
(a)
\(r=1\)
(b)
\(r=-1\)
(c)
\(\theta=\displaystyle\frac{\pi}{6}\)
(d)
\(\theta=\displaystyle\frac{7\pi}{6}\)
(e)
\(\theta=\displaystyle\frac{-5\pi}{6}\)
(f)
\(1\leq r < -1\text{,}\) \(0\leq\theta\leq\displaystyle\frac{\pi}{2}\)
(g)
\(-3\leq r \leq 2\text{,}\) \(\theta=\displaystyle\frac{\pi}{4}\)
(h)
\(r \leq 0\text{,}\) \(\theta=\displaystyle\frac{-\pi}{2}\)
(i)
\(\displaystyle\frac{2\pi}{3}\leq\theta\leq\displaystyle\frac{5\pi}{6}\)
(j)
\(r=3\sec(\theta)\)

Activity 15.28.

(a)
Find a polar form of the the Cartesian equation \(x^2+(y-3)^2=9\text{.}\)

Activity 15.29.

Find a Cartesian form of each of the given polar equations.
(a)
\(r^2=4r\cos(\theta)\)
(b)
\(r=\displaystyle\frac{4}{2\cos(\theta)-\sin(\theta)}\)

Subsection 15.4.2 Videos

Figure 226. Video for CO4

Subsection 15.4.3 Exercises