Skip to main content
Logo image

Section 19.6 Subspace Basis and Dimension (EV6)

Subsection 19.6.1 Warm Up

Activity 19.85.

Consider the set \(S\) of vectors in \(\IR^4\) given by
\begin{equation*} S=\left\{\left[\begin{array}{c}2\\3\\0\\1\end{array}\right],\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right]\right\} \end{equation*}
(a)
Is the set \(S\) linearly independent or linearly dependent?
(b)
How would you describe the subspace \(\vspan{S}\) geometrically?
(c)
What do the spaces \(\vspan{S}\) and \(\IR^2\) have in common? In what ways do they differ?

Subsection 19.6.2 Class Activities

Observation 19.86.

Recall from section Section 19.3 that a subspace of a vector space is the result of spanning a set of vectors from that vector space.
Recall also that a linearly dependent set contains “redundant” vectors. For example, only two of the three vectors in Figure 259 are needed to span the planar subspace.

Activity 19.87.

Consider the subspace of \(\IR^4\) given by \(W=\vspan\left\{ \left[\begin{array}{c}2\\3\\0\\1\end{array}\right], \left[\begin{array}{c}2\\0\\1\\-1\end{array}\right], \left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right], \left[\begin{array}{c}1\\5\\-1\\0\end{array}\right] \right\} \text{.}\)
(a)
Mark the column of \(\RREF\left[\begin{array}{cccc} 2&2&2&1\\ 3&0&-3&5\\ 0&1&2&-1\\ 1&-1&-3&0 \end{array}\right]\) that shows that \(W\)’s spanning set is linearly dependent.
(b)
What would be the result of removing the vector that gave us this column?
  1. The set still spans \(W\text{,}\) and remains linearly dependent.
  2. The set still spans \(W\text{,}\) but is now also linearly independent.
  3. The set no longer spans \(W\text{,}\) and remains linearly dependent.
  4. The set no longer spans \(W\text{,}\) but is now linearly independent.

Definition 19.88.

Let \(W\) be a subspace of a vector space. A basis for \(W\) is a linearly independent set of vectors that spans \(W\) (but not necessarily the entire vector space).

Observation 19.89.

So given a set \(S=\{\vec v_1,\dots,\vec v_m\}\text{,}\) to compute a basis for the subspace \(\vspan S\text{,}\) simply remove the vectors corresponding to the non-pivot columns of \(\RREF[\vec v_1\,\dots\,\vec v_m]\text{.}\) For example, since
\begin{equation*} \RREF \left[\begin{array}{cccc} 1 & 2 & 0 & 1 \\ 2 & 4 & -2 & 0 \\ 3 & 6 & -2 & 1 \\ \end{array}\right] = \left[\begin{array}{cccc} \markedPivot{1} & 2 & 0 & 1 \\ 0 & 0 & \markedPivot{1} & 1 \\ 0 & 0 & 0 & 0 \end{array}\right] \end{equation*}
the subspace \(W=\vspan\setList{ \left[\begin{array}{c}1\\2\\3\end{array}\right], \left[\begin{array}{c}2\\4\\6\end{array}\right], \left[\begin{array}{c}0\\-2\\-2\end{array}\right], \left[\begin{array}{c}1\\0\\1\end{array}\right] }\) has \(\setList{ \left[\begin{array}{c}1\\2\\3\end{array}\right], \left[\begin{array}{c}0\\-2\\-2\end{array}\right] }\) as a basis.

Activity 19.90.

(a)
Find a basis for \(\vspan S\) where
\begin{equation*} S=\left\{ \left[\begin{array}{c}2\\3\\0\\1\end{array}\right], \left[\begin{array}{c}2\\0\\1\\-1\end{array}\right], \left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right], \left[\begin{array}{c}1\\5\\-1\\0\end{array}\right] \right\}\text{.} \end{equation*}
(b)
Find a basis for \(\vspan T\) where
\begin{equation*} T=\left\{ \left[\begin{array}{c}2\\0\\1\\-1\end{array}\right], \left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right], \left[\begin{array}{c}1\\5\\-1\\0\end{array}\right], \left[\begin{array}{c}2\\3\\0\\1\end{array}\right] \right\}\text{.} \end{equation*}

Observation 19.91.

Even though we found different bases for them, \(\vspan S\) and \(\vspan T\) are exactly the same subspace of \(\IR^4\text{,}\) since
\begin{equation*} S=\left\{ \left[\begin{array}{c}2\\3\\0\\1\end{array}\right], \left[\begin{array}{c}2\\0\\1\\-1\end{array}\right], \left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right], \left[\begin{array}{c}1\\5\\-1\\0\end{array}\right] \right\} = \left\{ \left[\begin{array}{c}2\\0\\1\\-1\end{array}\right], \left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right], \left[\begin{array}{c}1\\5\\-1\\0\end{array}\right], \left[\begin{array}{c}2\\3\\0\\1\end{array}\right] \right\}=T\text{.} \end{equation*}
Thus the basis for a subspace is not unique in general.

Definition 19.93.

The dimension of a vector space or subspace is equal to the size of any basis for the vector space.
As you’d expect, \(\IR^n\) has dimension \(n\text{.}\) For example, \(\IR^3\) has dimension \(3\) because any basis for \(\IR^3\) such as
\begin{equation*} \setList{\vec e_1,\vec e_2,\vec e_3} \text{ and } \setList{ \left[\begin{array}{c}1\\0\\0\end{array}\right], \left[\begin{array}{c}0\\1\\0\end{array}\right], \left[\begin{array}{c}1\\1\\1\end{array}\right] } \text{ and } \setList{ \left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}2\\-2\\1\end{array}\right], \left[\begin{array}{c}3\\-2\\5\end{array}\right] } \end{equation*}
contains exactly three vectors.

Activity 19.94.

Consider the following subspace \(W\) of \(\mathbb R^4\text{:}\)
\begin{equation*} W=\mathrm{span}\,\left\{ \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ -1 \end{array}\right] , \left[\begin{array}{c} -2 \\ 0 \\ 0 \\ 2 \end{array}\right] , \left[\begin{array}{c} -3 \\ 1 \\ -5 \\ 5 \end{array}\right] , \left[\begin{array}{c} 12 \\ -3 \\ 15 \\ -18 \end{array}\right] \right\}. \end{equation*}
(a)
Explain and demonstrate how to find a basis of \(W\text{.}\)
(b)
Explain and demonstrate how to find the dimension of \(W\text{.}\)

Activity 19.95.

The dimension of a subspace may be found by doing what with an appropriate RREF matrix?
  1. Count the rows.
  2. Count the non-pivot columns.
  3. Count the pivots.
  4. Add the number of pivot rows and pivot columns.

Subsection 19.6.3 Individual Practice

Activity 19.96.

In Observation 19.89, we found a basis for the subspace
\begin{equation*} W=\vspan\setList{ \left[\begin{array}{c}1\\2\\3\end{array}\right], \left[\begin{array}{c}2\\4\\6\end{array}\right], \left[\begin{array}{c}0\\-2\\-2\end{array}\right], \left[\begin{array}{c}1\\0\\1\end{array}\right] }. \end{equation*}
To do so, we use the results of the calculation:
\begin{equation*} \RREF \left[\begin{array}{cccc} 1 & 2 & 0 & 1 \\ 2 & 4 & -2 & 0 \\ 3 & 6 & -2 & 1 \\ \end{array}\right] = \left[\begin{array}{cccc} \markedPivot{1} & 2 & 0 & 1 \\ 0 & 0 & \markedPivot{1} & 1 \\ 0 & 0 & 0 & 0 \end{array}\right] \end{equation*}
to conclude that the set \(\setList{ \left[\begin{array}{c}1\\2\\3\end{array}\right], \left[\begin{array}{c}0\\-2\\-2\end{array}\right] }\text{,}\) the set of vectors corresponding to the pivot columns of the RREF, is a basis for \(W\text{.}\)
(a)
Explain why neither of the vectors \(\left[\begin{array}{c}1\\0\\0\end{array}\right], \left[\begin{array}{c}0\\1\\0\end{array}\right]\) are elements of \(W\text{.}\)
(b)
Explain why this shows that, in general, when we calculate a basis for \(W=\vspan\{\vec{v}_1,\dots, \vec{v}_n\}\text{,}\) the pivot columns of \(\RREF[\vec{v}_1\dots \vec{v}_n]\) themselves do not form a basis for \(W\text{.}\)

Subsection 19.6.4 Videos

Figure 262. Video: Finding a basis of a subspace and computing the dimension of a subspace

Subsection 19.6.5 Exercises

Subsection 19.6.6 Mathematical Writing Explorations

Exploration 19.97.

Prove each of the following statements is true.
  • If \(\{\vec{b}_1, \vec{b}_2,\ldots, \vec{b}_m\}\) and \(\{\vec{c}_1,\vec{c}_2,\ldots,\vec{c}_n\}\) are each a basis for a vector space \(V\text{,}\) then \(m=n.\)
  • If \(\{\vec{v}_1,\vec{v}_2\ldots, \vec{v}_n\}\) is linearly independent, then so is \(\{\vec{v}_1,\vec{v}_1 + \vec{v}_2, \ldots, \vec{v}_1 + \vec{v}_2 + \cdots + \vec{v}_n\}\text{.}\)
  • Let \(V\) be a vector space of dimension \(n\text{,}\) and \(\vec{v} \in V\text{.}\) Then there exists a basis for \(V\) which contains \(\vec{v}\text{.}\)

Exploration 19.98.

Suppose we have the set of all function \(f:S \rightarrow \mathbb{R}\text{.}\) We claim that this is a vector space under the usual operation of function addition and scalar multiplication. What is the dimension of this space for each choice of \(S\) below:
  • \(\displaystyle S = \{1\}\)
  • \(\displaystyle S = \{1,2\}\)
  • \(\displaystyle S = \{1,2,\ldots ,n\}\)
  • \(\displaystyle S = \mathbb{R}\)

Exploration 19.99.

Suppose you have the vector space \(V = \left\{\left(\begin{array}{c}x\\y\\z\end{array}\right)\in \mathbb{R}^3: x + y + z = 1\right\}\) with the operations \(\left(\begin{array}{c}x_1\\y_1\\z_1\end{array}\right) \oplus \left(\begin{array}{c}x_2\\y_2\\z_2\end{array}\right) = \left(\begin{array}{c}x_1 + x_2 - 1\\y_1 + y_2\\z_1+z_2\end{array}\right) \mbox{ and } \alpha\odot\left(\begin{array}{c}x_1\\y_1\\z_1\end{array}\right) = \left(\begin{array}{c}\alpha x_1 - \alpha +1\\\alpha y_1\\\alpha z_1\end{array}\right).\) Find a basis for \(V\) and determine it’s dimension.

Subsection 19.6.7 Sample Problem and Solution

Sample problem Example C.10.