Skip to main content
Logo image

Section 22.5 Change of Basis (GT5)

Subsection 22.5.1 Warm Up

Subsection 22.5.2 Class Activities

Remark 22.75.

So far, when working with the Euclidean vector space \(\IR^n\text{,}\) we have primarily worked with the standard basis \(\mathcal{E}=\setList{\vec{e}_1,\dots, \vec{e}_n}\text{.}\) We can explore alternative perspectives more easily if we expand our toolkit to analyze different bases.

Activity 22.76.

Let \(\mathcal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}=\setList{\begin{bmatrix}1\\0\\1\end{bmatrix},\begin{bmatrix}1\\-1\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}}\text{.}\)
(a)
Is \(\cal{B}\) a basis of \(\IR^3\text{?}\)
  1. Yes.
  2. No.
(b)
Since \(\cal{B}\) is a basis, we know that if \(\vec{v}\in \IR^3\text{,}\) the following vector equation will have a unique solution:
\begin{equation*} x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3=\vec{v} \end{equation*}
Given this, we define a map \(C_{\mathcal{B}}\colon\IR^3\to\IR^3\) via the rule that \(C_{\mathcal{B}}(\vec{v})\) is equal to the unique solution to the above vector equation. The map \(C_{\mathcal{B}}\) is a linear map.
Compute \(C_{\mathcal{B}}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right).\)
(c)
Compute \(C_\mathcal{B}(\vec{e}_1),C_\mathcal{B}(\vec{e}_2), C_\mathcal{B}(\vec{e}_3)\) and, in doing so, write down the standard matrix \(M_\mathcal{B}\) of \(C_\mathcal{B}\text{.}\)

Observation 22.77.

Note that one way to compute \(M_{\mathcal{B}}\) is calculate the RREF of the following matrix:
\begin{equation*} \left[\begin{array}{ccc|ccc}1&1&0&1&0&0\\ 0&-1&1&0&1&0\\ 1&1&1&0&0&1\end{array}\right]\sim\left[\begin{array}{ccc|ccc}1&0&0&2&1&-1\\ 0&1&0&-1&-1&1\\ 0&0&1&-1&0&1\end{array}\right] \end{equation*}
Thus, the matrix \(M_{\mathcal{B}}\) is the inverse of the matrix \([\vec{v}_1\ \vec{v}_2\ \vec{v}_3]\text{.}\) That is:
\begin{equation*} M_{\mathcal{B}}^{-1}=[\vec{v}_1\ \vec{v}_2\ \vec{v}_3]. \end{equation*}

Definition 22.78.

Given a basis \(\cal{B}=\setList{\vec{v}_1,\dots, \vec{v}_n}\) of \(\IR^n\text{,}\) the change of basis/coordinate transformation from the standard basis to \(\mathcal{B}\) is the transformation \(C_\mathcal{B}\colon\IR^n\to\IR^n\) defined by the property that, for any vector \(\vec{v}\in\IR^n\text{,}\) the vector \(C_\mathcal{B}(\vec{v})\) is the unique solution to the vector equation:
\begin{equation*} x_1\vec{v}_1+\dots+x_n\vec{v}_n=\vec{v}. \end{equation*}
Its standard matrix is called the change-of-basis matrix from the standard basis to \(\mathcal{B}\) and is denoted by \(M_{\mathcal{B}}\text{.}\) It satisfies the following:
\begin{equation*} M_{\mathcal{B}}^{-1}=[\vec{v}_1\ \cdots\ \vec{v}_n]. \end{equation*}

Remark 22.79.

The vector \(C_\mathcal{B}(\vec{v})\) is the \(\mathcal{B}\)-coordinates of \(\vec{v}\text{.}\) If you work with standard coordinates, and I work with \(\mathcal{B}\)-coordinates, then to build the vector that you call \(\vec{v}=\begin{bmatrix}a_1\\\vdots\\a_n\end{bmatrix}=a_1\vec{e}_1+\cdots+a_n\vec{e}_n\text{,}\) I would first compute \(C_\mathcal{B}(\vec{v})=\begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix}\) and then build \(\vec{v}=x_1\vec{v}_1+\cdots+x_n\vec{v}_n\text{.}\)
In particular, notation as above, we would have:
\begin{equation*} a_1\vec{e}_1+\cdots a_n\vec{e}_n=\vec{v}=x_1\vec{v}_1+\cdots+x_n\vec{v}_n. \end{equation*}

Activity 22.80.

Let \(\vec{v}_1=\begin{bmatrix}1\\-2\\1\end{bmatrix},\ \vec{v}_2=\begin{bmatrix}-1\\0\\3\end{bmatrix},\ \vec{v}_3=\begin{bmatrix}0\\1\\-1\end{bmatrix}\text{,}\) and \(\mathcal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}\)
(a)
Calculate \(M_{\mathcal{B}}\) using technology.
(b)
Use your result to calculate \(C_\mathcal{B}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right)\) and express the vector \(\begin{bmatrix}1\\1\\1\end{bmatrix}\) as a linear combination of \(\vec{v}_1,\vec{v}_2,\vec{v}_3\text{.}\)

Observation 22.81.

Let \(T\colon\IR^n\to\IR^n\) be a linear transformation and let \(A\) denote its standard matrix. If \(\cal{B}=\setList{\vec{v}_1,\dots, \vec{v}_n}\) is some other basis, then we have:
\begin{align*} M_\mathcal{B}AM_{\mathcal{B}}^{-1} \amp= M_\mathcal{B}A[\vec{v_1}\cdots\vec{v}_n] \\ \amp= M_\mathcal{B}[T(\vec{v}_1)\cdots T(\vec{v}_n)]\\ \amp= [C_\mathcal{B}(T(\vec{v}_1))\cdots C_\mathcal{B}(T(\vec{v}_n))] \end{align*}
In other words, the matrix \(M_{\mathcal{B}}AM_{\mathcal{B}}^{-1}\) is the matrix whose columns consist of \(\mathcal{B}\)-coordinate vectors of the image vectors \(T(\vec{v}_i)\text{.}\) The matrix \(M_{\mathcal{B}}AM_{\mathcal{B}}^{-1}\) is called the matrix of \(T\) with respect to \(\mathcal{B}\)-coordinates.

Activity 22.82.

Let \(\mathcal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}=\setList{\begin{bmatrix}1\\-2\\1\end{bmatrix},\begin{bmatrix}-1\\0\\3\end{bmatrix},\begin{bmatrix}0\\1\\-1\end{bmatrix}}\) be basis from the previous Activity. Let \(T\) denote the linear transformation whose standard matrix is given by:
\begin{equation*} A=\begin{bmatrix}9&4&4\\6&9&2\\-18&-16&-9\end{bmatrix}. \end{equation*}
(a)
Calculate the matrix \(M_\mathcal{B}AM_{\mathcal{B}}^{-1}\text{.}\)
(b)
The matrix \(A\) describes how \(T\) transforms the standard basis of \(\IR^3\text{.}\) The matrix \(M_\mathcal{B}AM_{\mathcal{B}}^{-1}\) describes how \(T\) transforms the basis \(\mathcal{B}\) (in \(\mathcal{B}\)-coordinates).
Which of these two descriptions of \(T\) is most helpful to you in describing/understanding/visualizing the transformation \(T\) and why?

Subsection 22.5.3 Sample Problem and Solution

Sample problem Example C.26.